

TECHNISCHES HANDBUCH optibelt DELTA Chain

OPTIBELT

TECHNISCHES HANDBUCH optibelt DELTA Chain

Der optibelt DELTA Chain setzt neue Maßstäbe im Markt der Hochleistungs-Zahnriemen. Der endlose optibelt DELTA Chain Hochleistungs-Zahnriemen ermöglicht zusammen mit den zugehörigen ZRS DC Zahnscheiben eine schlupffreie und synchrone Leistungsübertragung bis zu mehreren Hundert Kilowatt. Eine bis zu 100 % höhere Leistungsübertragung gegenüber Hochleistungs-Zahnriemen aus Gummi wie dem optibelt OMEGA HP ist möglich. Besonders im Vordergrund stehen hierbei Antriebe mit sehr hohem Drehmoment. Die Baubreite kann für Leistungsantriebe mit kleinen und mittleren Achsabständen grundsätzlich erheblich verringert werden.

Die innovative Materialkombination aus einer extrem widerstandsfähigen Polyurethanmischung, einem abriebfesten und speziell behandelten Polyamidgewebe sowie einem Carbonzugstrang macht den **optibelt DELTA Chain** unerreicht belastbar und zugleich beständig gegenüber einer Vielzahl von Chemikalien, Ölen und Flüssigkeiten.

Somit bietet sich dem **optibelt DELTA Chain** eine Vielzahl von Einsatzmöglichkeiten, unter anderem auch Anwendungen, die bis jetzt z.B. Rollenketten vorbehalten blieben.

Alle wichtigen Informationen sowie die Methoden zur Berechnung von Antrieben mit **optibelt DELTA Chain** Hochleistungs-Zahnriemen sind in dem vorliegenden Technischen Handbuch enthalten. Diese werden ergänzt durch die Optibelt-Sortiments- und -Preislisten zu Riemen und Scheiben, Technische Datenblätter, die optibelt CAP Software zur Antriebsauslegung, CAD-Zeichnungen der optibelt ZRS DC Zahnscheiben und zusätzliche Optibelt-Dokumentationen, die jeweils aktuell auf der Optibelt-Internetseite zu finden sind.

Bei weiteren Fragen steht Ihnen der kostenlose Service unserer Anwendungstechniker zur Verfügung.

INHALTSVERZEICHNIS

	Einführung	1
	Vertriebsorganisation der Arntz Optibelt Gruppe	2-3
	1.1 Aufbau	4
1 PRODUKTBESCHREIBUNG		
	1.2 Eigenschaften	
	1.3 Abmessungen und Toleranzen	8-9
2 ZAHNRIEMEN-	2.1 optibelt DELTA Chain 8MDC	10
SORTIMENT	2.2 optibelt DELTA Chain 14MDC	11
3 ANTRIEBSAUSLEGUNG	3.1 Formelzeichen	12
	3.2 Vorauswahl der Profile	13
	3.3 Belastungsfaktoren	14
	3.4 Zusatzfaktoren und Mindestverstellmenge	15
	3.5 Formeln und Berechnungsbeispiel	16-17
	3.6 Vorspannkrafteinstellung durch Frequenzmessung	18

INHALTSVERZEICHNIS

4 LEISTUNGSWERTE	4.1 optibelt DELTA Chain 8MDC	19
	4.2 optibelt DELTA Chain 14MDC	20
5 KONSTRUKTIONSHILFEN	5.1 Bordscheiben / Spannrollen	21
	5.2 Montage und Wartung	22
	5.3 Störung – Ursache – Abhilfe	23
6 ZAHNSCHEIBEN	6.1 Mindestscheibendurchmesser und Ausführungen	24
	6.2 Maße und Toleranzen	25-26
	6.3 Sortiment Taper-Buchsen	27
	6.4 Sortiment Zahnscheiben	28-33
7 ALLGEMEINE	7.1 Normenübersicht	34
INFORMATIONEN	7.2 Datenblatt zur Berechnung	35

1.1 AUFBAU

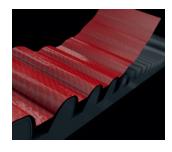
ZÄHNE

Die Zähne bestehen wie der Rücken aus hochfestem Gießpolyurethan bzw. Duroplast sowie einem extrem verschleißfesten Gewebe. Beides führt zu einer überragenden Abscherfestigkeit der Zähne.

ZAHNSEITIGES GEWEBE

Die Abscherfestigkeit der Zähne wird durch ein festes, beschichtetes und gut haftendes Gewebe unterstützt. Weiterhin wird die Reibung zwischen Riemen und Scheibe reduziert. Dies verringert die Erwärmung der Reibpartner und minimiert das Laufgeräusch.

ZAHNPROFIL


Das bogenförmige Zahnprofil des optibelt DELTA Chain Zahnriemens optimiert den Eingriff und den Sitz in der exakt passenden Verzahnung der zugehörigen optibelt ZRS DC Zahnscheiben. Dieses Zahnprofil ist nicht kompatibel mit Omegabzw. HTD-, RPP- und STD-Profilen. Die Verwendung des optibelt DELTA Chain Zahnriemens wird daher nur in den optibelt ZRS DC Zahnscheiben bzw. profilgleichen CTD- oder PC-Scheiben empfohlen. Diese und alle weiteren wesentlichen bogenförmigen Profile, insbesondere auch die oben genannten Zahnscheiben, sind in der ISO 13050 genormt.

ZUGSTRANG

Im Gegensatz zu Zahnriemen aus Gummi oder zu Polyurethanzahnriemen z.B. der optibelt ALPHA Produktgruppen wird ein Zugstrang aus Carbonfasern eingesetzt. Dieser zeichnet sich besonders durch die Übertragung sehr hoher Kräfte aus. Carboncord ist im Vergleich zu allen anderen Zugsträngen beispielsweise aus den Materialien Glas, Stahl oder Aramid unerreicht längenstabil und überragend bruchfest. optibelt DELTA Chain Zahnriemen dürfen nicht geknickt werden, da sonst der Carbonzugstrang beschädigt wird.

RÜCKEN

Der glatte Riemenrücken besteht aus einer abriebfesten, dünnen und somit biegewilligen Polyurethanmischung. Durch den glatten Rücken kann im Vergleich zu einer gerillten Struktur eine Rückenrolle ohne starke Geräuscherhöhung eingesetzt werden.

1.2 EIGENSCHAFTEN

LEISTUNGSÜBERTRAGUNG

Eine bis zu 100 % höhere Leistungsübertragung gegenüber Hochleistungs-Zahnriemen aus Gummi wie dem optibelt OMEGA HP ist möglich. Besonders im Vordergrund stehen hierbei Antriebe mit sehr hohem Drehmoment. Die Baubreite kann für Leistungsantriebe mit kleinen und mittleren Achsabständen grundsätzlich erheblich verringert werden.

CHEMIKALIENBESTÄNDIGKEIT

Aufgrund der verwendeten Materialien besitzt der optibelt DELTA Chain und hier insbesondere das Gießpolyurethan im Vergleich zu Gummi eine gute bis sehr gute Beständigkeit gegen Öle, Fette und eine Vielzahl aggressiver Chemikalien. Eine versuchstechnische Erprobung des gewählten Antriebs ist grundsätzlich empfehlenswert. Einfache Quellversuche sollten schon im Vorfeld durchgeführt werden.

TEMPERATURBESTÄNDIGKEIT

Der Zahnriemen lässt Temperaturen von ca. –30°C bis +80°C zu. Temperaturen darüber hinaus können zu einem frühzeitigen Ausfall des Riemens führen.

WIRKUNGSGRAD

Zahnriemenantriebe arbeiten formschlüssig und damit im Gegensatz zu kraftschlüssigen Antrieben synchron, d.h. ohne Drehzahlverlust. Trotz des hochfesten Polyurethans ist der Riemen in Biegerichtung flexibel und ermöglicht durch das speziell entwickelte Zahngewebe einen nahezu reibungsfreien Zahneingriff mit einem Wirkungsgrad von bis zu 98 %.

GERÄUSCHEMISSION

Die optimierte Zahnform und das beschichtete zahnseitige Gewebe minimieren die Reibung und das beim Eingriff in die Scheibe entstehende Geräusch. Auch durch die Reduzierung der Riemenbreite bis zu 50 % im Vergleich zu Hochleistungs-Zahnriemen aus Gummi wird zudem der Geräuschanteil durch Luftverdrängung wesentlich reduziert. In Summe kann daher der relativ harte optibelt optibelt DELTA Chain das Geräuschniveau eines Gummizahnriemens erreichen und insbesondere im Vergleich zu vielfach breiteren Gummi- oder Polyurethanzahnriemen in technischer Standardausführung sogar unterschreiten.

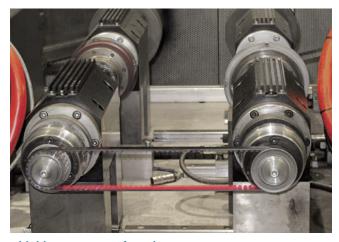


Abbildung 1.2.1: Prüfstand

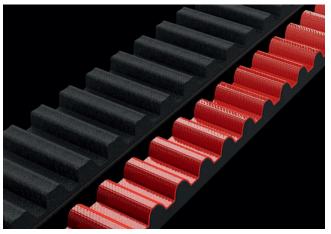


Abbildung 1.2.2: Reduzierte Baubreite

1.3 ABMESSUNGEN UND TOLERANZEN

Tabelle 1.3.1: Nennmaße und Metergewichte

Profil	Zahn- teilung	Gesamt- höhe	Zahn- höhe	Metergewicht je mm Breite
	t [mm]	h [mm]	h, [mm]	[kg/(m*mm)]
8MDC	8,0	5,9	3,43	0,0048
14MDC	14,0	9,8	6,0	0,0083

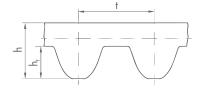


Abbildung 1.3.1: Profil DC

LÄNGENTOLERANZEN

Die angegebenen Längentoleranzen in Tabelle 1.3.2 beziehen sich auf den Achsabstand. Die Messanordnung ist in Abbildung 1.3.2 zu sehen.

Tabelle 1.3.2: Längentoleranzen

	Zahnrien L _w [ı		ge	Längentoleranz a _{LTol} [mm]
		<	760	± 0,30
>	786	<	1016	± 0,33
>	1022	<	1272	± 0,36
>	1274	<	1520	± 0,41
>	1526	<	1778	± 0,43
>	1784	<	2032	± 0,46
>	2040	<	2282	± 0,49
>	2288	<	2536	± 0,52
>	2544	<	2792	± 0,54
>	2800	<	3048	± 0,56
>	3052	<	3304	± 0,58
>	3312	<	3566*	± 0,60

^{*}Für größere Längen sind in Schritten von 250 mm jeweils weitere 0,03 mm zu addieren.

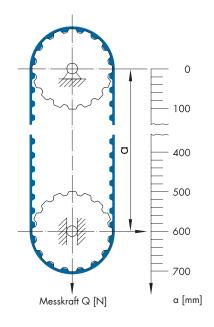


Abbildung 1.3.2: Anordnung zum Messen der Riemenlänge

Tabelle 1.3.3: Messkräfte zur Bestimmung der Riemenlänge

				į.	Breite [mm]			
Profil	Profil 12 20 21 36 37 62 68 90 125								
				M	esskraft [I	N]			
8MDC	267		467	756		1223			
14MDC		1179			2046		3447	4315	5627

1.3 ABMESSUNGEN UND TOLERANZEN

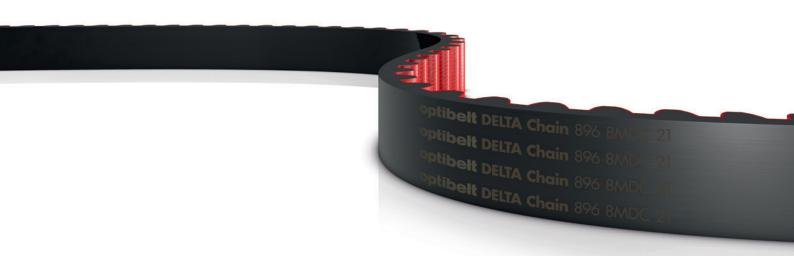
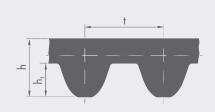


Tabelle 1.3.4: Breitentoleranz

Profil	Breite	Zulässige Toleranz der Riemenbreite [mm]				
	[mm]	Wirklänge L _w ≤ 840 mm	Wirklänge L _w > 840 mm ≤ 1680 mm	Wirklänge L _w > 1680 mm		
8MDC	< 12	±0,4	+0,4/-0,8	±0,8		
	≥ 12 < 21	±0,8	+0,8/-1,2	+0,8/-1,2		
	≥ 21 < 36	±0,8	+0,8/-1,2	+0,8/-1,2		
	≥ 36 < 62	±0,8	+0,8/-1,2	+0,8/-1,2		
	≥ 62	±1,2	+1,2/-1,6	±1,6		
14MDC	< 20	±0,8	±0,8	+0,8/-1,2		
	≥ 20 < 37	±0,8	+0,8/-1,2	+0,8/-1,2		
	≥ 37 < 68	±0,8	+0,8/-1,2	+0,8/-1,2		
	≥ 68 < 90	+1,2/-1,6	±1,6	+1,6/-2,0		
	≥ 90 < 125	±1,6	+1,6/-2,0	±2,0		
	≥ 125	±2,4	+2,4/-2,8	+2,4/-3,2		

NORMUNG


optibelt DELTA Chain Zahnriemen und optibelt ZRS DC Zahnscheiben sind in der ISO 13050 genormt.

2 ZAHNRIEMENSORTIMENT

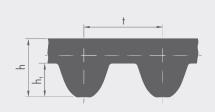
2.1 optibelt DELTA Chain 8MDC

Pro	fil	8MDC
t	[mm]	8,0
h	[mm]	5,9
h _t	[mm]	3,43

	optibelt DELTA Chain 8MDC					
Profil, Länge	Wirklänge L _w [mm]	Anzahl der Zähne	Profil, Länge	Wirklänge L _w [mm]	Anzahl der Zähne	
8MDC 640 8MDC 720 8MDC 800 8MDC 896 8MDC 960	640,00 720,00 800,00 896,00 960,00	80 90 100 112 120	8MDC 3280 8MDC 3600 8MDC 4000 8MDC 4400 8MDC 4480	3280,00 3600,00 4000,00 4400,00 4480,00	410 450 500 550 560	
8MDC 1000 8MDC 1040 8MDC 1120 8MDC 1200 8MDC 1224	1000,00 1040,00 1120,00 1200,00 1224,00	125 130 140 150 153				
8MDC 1280 8MDC 1440 8MDC 1600 8MDC 1760 8MDC 1792	1280,00 1440,00 1600,00 1760,00 1792,00	160 180 200 220 224				
8MDC 2000 8MDC 2200 8MDC 2240 8MDC 2400 8MDC 2520	2000,00 2200,00 2240,00 2400,00 2520,00	250 275 280 300 315	Bitte auch c	lie aktuelle Sortiment	sliste beachten	
8MDC 2600 8MDC 2800 8MDC 2840 8MDC 3048 8MDC 3200	2600,00 2800,00 2840,00 3048,00 3200,00	325 350 355 381 400		veitere Abmessungen		
	Sta	ndardbreiten: 12 mm 7wischenbreit	n, 21 mm, 36 mm, 62 en auf Anfrage	2 mm		

Bestellbeispiel:

optibelt DELTA Chain 1120 8MDC 21


 $1120 = Wirklänge L_w [mm]$ 8MDC = Profil

21 = Breite [mm]

2 ZAHNRIEMENSORTIMENT

2.2 optibelt DELTA Chain 14MDC

Pro	fil	14MDC
t	[mm]	14,0
h	[mm]	9,8
h_t	[mm]	6,0

		optibelt DELTA	Chain 14MDC		
Profil, Länge	Wirklänge L _w [mm]	Anzahl der Zähne	Profil, Länge	Wirklänge L _w [mm]	Anzahl der Zähne
14MDC 994 14MDC 1120 14MDC 1190 14MDC 1260 14MDC 1400	994,00 1120,00 1190,00 1260,00 1400,00	71 80 85 90 100	14MDC 3920 14MDC 4326 14MDC 4410	3920,00 4326,00 4410,00	280 309 315
14MDC 1568 14MDC 1610 14MDC 1750 14MDC 1778 14MDC 1890	1568,00 1610,00 1750,00 1778,00 1890,00	112 115 125 127 135			
14MDC 1960 14MDC 2100 14MDC 2240 14MDC 2310 14MDC 2380	1960,00 2100,00 2240,00 2310,00 2380,00	140 150 160 165 170	ALLE A	BMESSUNGEN AUF A	ANFRAGE!
14MDC 2450 14MDC 2520 14MDC 2590 14MDC 2660 14MDC 2800	2450,00 2520,00 2590,00 2660,00 2800,00	175 180 185 190 200	Bitte auch c	lie aktuelle Sortiment	sliste beachten
14MDC 3136 14MDC 3304 14MDC 3360 14MDC 3500 14MDC 3850	3136,00 3304,00 3360,00 3500,00 3850,00	224 236 240 250 275		reitere Abmessungen	
14MDC 3850		dbreiten: 20 mm, 37	mm, 68 mm, 90 mm ten auf Anfrage	, 125 mm	

Bestellbeispiel:

1400 = Wirklänge L_w [mm] 14MDC = Profil

optibelt DELTA Chain 1400 14MDC 37

37 = Breite [mm]

3.1 FORMELZEICHEN

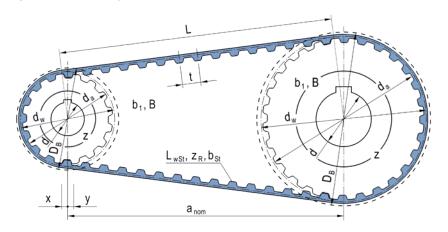


Tabelle 3.1.1: Formelzeichen

Formel- zeichen	Erklärung	Ein- heit	Formel- zeichen	
а	Achsabstand	[mm]	n ₂	D
a _{nom}	Achsabstand, mit einer		P	V
	Standard-Riemenlänge errechnet	[mm]		ül
c ₀	Grundbelastungsfaktor		P _B	В
c ₁	Zahneingriffsfaktor		P _N	N
c ₂	Gesamtbelastungsfaktor		Ρ _Ü	ül
c ₃	Übersetzungszuschlag			Ri
c ₆	Ermüdungszuschlag		F _a	Ν
C ₇	Längenfaktor		F _{n zul}	m
da	Außendurchmesser der Zahnscheibe	[mm]	F _{n3}	ef
d _w	Wirkdurchmesser der Zahnscheibe	[mm]	F _n	ef
d_{wg}	Wirkdurchmesser der großen			in
	Zahnscheibe	[mm]	t	Z
d_{wk}	Wirkdurchmesser der kleinen		V	Ri
	Zahnscheibe	[mm]	x	Ν
d _{w1}	Wirkdurchmesser der treibenden			a,
	Zahnscheibe	[mm]	у	Ν
d_{w2}	Wirkdurchmesser der getriebenen			a,
	Zahnscheibe	[mm]	z _e	Α
E _a	Eindrücktiefe des Trums	[mm]		kl
F	Prüfkraft	[N]	z _g	Α
f	Frequenz	[Hz]	z _k	Α
i	Übersetzung		z _r	Α
L	Trumlänge	[mm]	z _l	Α
L _{wSt}	Standard-Wirklänge des Zahnriemens	[mm]		Z
L _{wth}	errechnete Wirklänge des Zahnriemens	[mm]	z ₂	Α
n ₁	Drehzahl der treibenden Zahnscheibe	[min ⁻¹]		Z

Formel- zeichen	Erklärung	Ein- heit
n ₂	Drehzahl der getriebenen Zahnscheibe	[min ⁻¹]
P	vom Zahnriemenantrieb zu	
	übertragende Leistung	[kW]
P _B	Berechnungsleistung	[kW]
P _N	Nennleistung	[kW]
ΡÜ	übertragbare Leistung einer Standard-	
	Riemenbreite $[P_N \cdot c_1 \cdot c_7]$	[kW]
Fa	Mindest-Achskraft im statischen Zustand	[N]
F _{n zul}	maximal zulässige Umfangskraft	[N]
F _{n3}	effektiv zu übertragende Umfangskraft	[N]
F _n	effektiv zu übertragende Umfangskraft	
	inkl. tatsächlicher Zentrifugalkraft	[N]
t	Zahnteilung	[mm]
V	Riemengeschwindigkeit	[m/s]
x	Mindestverstellweg des Achsabstandes	
	a _{nom} zum Spannen des Zahnriemens	[mm]
у	Mindestverstellweg des Achsabstandes	
	a _{nom} zum Auflegen des Zahnriemens	[mm]
Z _e	Anzahl der eingreifenden Zähne der	
	kleinen Scheibe	
z _g	Anzahl der Zähne der großen Zahnscheibe	
z _k	Anzahl der Zähne der kleinen Zahnscheibe	
z _r	Anzahl der Zähne des Zahnriemens	
z _l	Anzahl der Zähne der treibenden	
	Zahnscheibe	
z ₂	Anzahl der Zähne der getriebenen	
	Zahnscheibe	

Abbildung 3.1.1: Beispielhafte Getriebegeometrie: Riemen und Scheiben

Drehzahl der kleinen Zahnscheibe $n_k \, [\mathrm{min}^{\text{-1}}]$

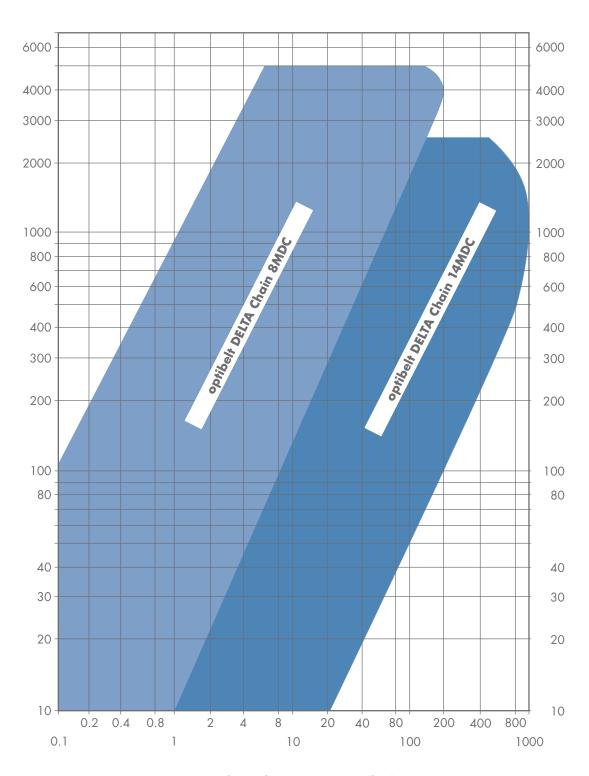

3 ANTRIEBSAUSLEGUNG 3.2 VORAUSWAHL DER PROFILE

Diagramm 3.2.1: Vorauswahl der Profile 8MDC und 14MDC

Drehzahl der kleinen Zahnscheibe $n_k \, [\text{min}^{\text{-1}}]$

Siehe auch optibelt CAP Antriebsberechnung, Software unter www.optibelt.com

Berechnungsleistung $P_B = P \cdot c_2$ [kW]

3.3 BELASTUNGSFAKTOREN

GESAMTBELASTUNGSFAKTOR c2

Der Gesamtbelastungsfaktor c2 setzt sich aus dem Grundbelastungsfaktor c0 und zwei weiteren Zuschlägen c3 und und c6 zusammen.

$$\mathbf{c}_2 = \mathbf{c}_0 + \mathbf{c}_3 + \mathbf{c}_6 \qquad [-]$$

$$\mathbf{c}_2 \ge \frac{\mathsf{M}_A}{\mathsf{M}_N}, \ \mathbf{c}_2 \ge \frac{\mathsf{M}_{\mathsf{Br}}}{\mathsf{M}_N} \qquad [-] \qquad \text{am Antrieb} \qquad \text{mit } \mathsf{M}_A \ [\mathsf{Nm}], \ \mathsf{M}_N \ [\mathsf{Nm}] \ \text{und } \mathsf{M}_{\mathsf{Br}} \ [\mathsf{Nm}]$$

$$c_2 \ge \frac{M_{Br}}{M_N \cdot i}$$
 [—] am Abtrieb mit M_N [Nm], M_{Br} [Nm] und i [—]

Der Gesamtbelastungsfaktor c_2 sollte zudem ein hohes Anlaufmoment M_A und ein hohes Bremsmoment M_{Br} am Antrieb bzw. ein hohes Bremsmoment am Abtrieb im Verhältnis zum Nennmoment M_N der Antriebsmaschine berücksichtigen. Bei häufigen Schaltungen und hohen Anlauf- bzw. Bremsmomenten, die dadurch zur Hauptbelastung werden – die Leistungsübertragung selbst tritt in den Hintergrund –, muss auf den höchsten ermittelten Quotienten eine zusätzliche Sicherheit aufgeschlagen werden.

Tabelle 3.3.1: Grundbelastungsfaktor co

	Belastungsart und Beispiele für Antriebsmaschinen								
CO	Gleichmäßige Elektromotor Schnell laufend Kolbenmaschine Zylinderzahl	e Turbine	Ungleichmäßiger Lauf Hydraulikmotor Langsam laufende Turbine Kolbenmaschine mit geringer Zylinderzahl						
Art der Grundbelastung und	Grundbelastungsfaktor c ₀ bei täglicher Betriebsdauer								
Beispiele für Arbeitsmaschinen	bis 16 h	über 16 h	bis 16 h	über 16 h					
Leichte Antriebe, stoßfreier und gleichförmiger Lauf Messgeräte Filmkameras Büromaschinen Bandförderanlagen (leichtes Gut)	1,3	1,4	1,4	1,5					
Mittlere Antriebe, Betrieb mit kleiner bis mittlerer zeitweiliger Stoßbelastung Mischmaschinen Küchenmaschinen Druckereimaschinen Textilmaschinen Verpackungsmaschinen Bandförderanlagen (schweres Gut)	1,6	1,7	1,8	1,9					
Schwere Antriebe, Betrieb mit mittlerer bis starker zeitweiliger Stoßbelastung Werkzeugmaschinen Holzbearbeitungsmaschinen Exzenterantriebe Förderanlagen (schweres Gut)	1,8	1,9	2,0	2,1					
Sehr schwere Antriebe, Betrieb mit starker dauernder Stoßbelastung Mühlen Kalander Extruder Kolbenpumpen und -kompressoren Hebezeuge	2,0	2,1	2,2	2,3					

3.4 ZUSATZFAKTOREN UND MINDESTVERSTELLWEGE

GRUNDBELASTUNGSFAKTOR co

Der Grundbelastungsfaktor co berücksichtigt die tägliche Betriebsdauer und die Art der Antriebs- und Arbeitsmaschine. Da es nicht möglich ist, jede denkbare Kombination aus Antriebsmaschine, Arbeitsmaschine und Betriebsbedingungen in einer Tabelle zusammenzufassen, sind die Grundbelastungsfaktoren als Richtwerte anzusehen. Die Zuordnung der Arbeitsmaschine ist von der jeweils vorhandenen Belastungsart abhängig.

Für langsam laufende Antriebe mit einer Drehzahl von ≤ 100 min⁻¹ ist ein Grundbelastungsfaktor von mindestens 2 zu empfehlen.

ÜBERSETZUNGSZUSCHLAG c3

Für die Übersetzungen ins Schnelle wird der dem Übersetzungsverhältnis entsprechende Wert zum Grundbelastungsfaktor c_0 addiert.

Tabelle 3.4.1: Übersetzungszuschlag

Übersetzung	Übersetzungszuschlag
i	c ₃
≥ 0,80	0,0
< 0,80 ≥ 0,57	0,1
< 0,57 ≥ 0,40	0,2
< 0,40 ≥ 0,28	0,3
< 0.28	0.4

Tabelle 3.4.4: Zahneingriffsfaktor c₁

Anzahl der eingreifenden	Zahneingriffsfaktor
Zähne	c ₁
≥ 6	1,0
5	0,8
4	0,6
3	0,4
2	0,2

Mindestverstellweg x zum Spannen von Zahnriemen

$$x = 0.004 \cdot a_{nom}$$

Tabelle 3.4.2: Ermüdungszuschlag c6

Betriebsbedingungen	Ermüdungszuschlag c ₆
Verwendung von Spann- oder Umlenkrollen	0,2
Betriebsdauer 16–24 h	0,2
Nur seltener bzw. gelegentlicher Betrieb	- 0,2

Tabelle 3.4.5: Mindestverstellweg y zum Auflegen bei Zahnscheiben ohne Bordscheibe

Achsabstände [mm]	Mindestverstellweg y [mm]
≤ 1000	1,8
> 1000 ≤ 1780	2,8
> 1780 ≤ 2540	3,3
> 2540 ≤ 3300	4,1
> 3300 ≤ 4600	5,3

Tabelle 3.4.3: Längenfaktor c₇

Profil 8MD	С	Profil 14MD	C
Wirklänge [mm]	c ₇	Wirklänge [mm]	c ₇
\leq 600 > 600 \leq 880 > 880 \leq 1200 > 1200 \leq 1760 > 1760 \leq 2240 > 2240 \leq 2840 > 2840 \leq 3600 > 3600	0,8 0,9 1,0 1,1 1,2 1,3 1,4	≤ 1190 > 1190 ≤ 1610 > 1610 ≤ 1890 > 1890 ≤ 2450 > 2450 ≤ 3150 > 3150 ≤ 3500 > 3500	0,80 0,90 0,95 1,00 1,05 1,10 1,20

Tabelle 3.4.6: Mindestverstellweg y zum Auflegen bei Zahnscheiben mit Bordscheiben

Profil	Bordscheibe an einer Zahnscheibe [mm]	Bordscheibe an beiden Zahnscheiben [mm]
8MDC	22	33
14MDC	36	58

3.5 FORMELN UND BERECHNUNGSBEISPIEL

ANTRIEBSMASCHINE

Elektromotor 50 Hz Stern-Dreieck-Schaltung

P = 11 kW $n_1 = 1450 \text{ min}^{-1}$

BETRIEBSBEDINGUNGEN

Tägliche Betriebsdauer: 12 Stunden Anzahl der Schaltungen: 2-mal täglich Umwelteinflüsse: Raumtemperatur, kein Einfluss von Öl, Wasser und Staub Achsabstand: 400 mm bis 450 mm Max. Scheibendurchmesser: 200 mm

ARBEITSMASCHINE

Papiermaschine $n_2 = 920 \text{ min}^{-1} \pm 2\%$ Art der Belastung: konstant

FORMELN

GESAMTBELASTUNGSFAKTOR

$$c_2 = c_0 + c_3 + c_6$$

 c_0 aus Tabelle 3.3.1
 c_3 aus Tabelle 3.4.1
 c_6 aus Tabelle 3.4.2

BERECHNUNGSBEISPIEL

$$c_2 = 1.6 + 0 + 0 = 1.6$$

 $c_0 = 1.6$

$$c_3 = 0$$

$$c_6 = 0$$

BERECHNUNGSLEISTUNG

$$P_B = P \cdot c_2$$

$$P_B = 11 \cdot 1,6 = 17,6 \text{ kW}$$

ZAHNRIEMENPROFIL

aus Diagramm 3.2.1

optibelt DELTA Chain

Profil 8MDC

ÜBERPRÜFUNG DER DREHZAHL

$$i = \frac{n_1}{n_2} = \frac{z_2}{z_1} = \frac{d_{w2}}{d_{w1}}$$

$$i = \frac{1450}{920} = 1,576$$

ZÄHNEZAHLEN DER ZAHNSCHEIBEN

Standard-Zahnscheiben, siehe 6.4 z_1 , d_{w1}

$$z_2 = z_1 \cdot i$$

$$d_{w1} = 91,67 \text{ mm}$$

$$z_2 = 3$$

$$z_2 = 36 \cdot 1,56 = 56,16$$

 $z_2 = 56$

$$d_{w2} = 142,60 \text{ mm}$$

Mindestdurchmesser beachten!

Mindestzähnezahl, siehe Tabelle 6.1.1

Forderung z ≥ 22 Mindestzähnezahl für Profil 8MDC erfüllt

ÜBERPRÜFUNG DER DREHZAHL

$$i = \frac{z_2}{z_1}$$

$$n_2 = \frac{n_1}{i}$$

$$i = \frac{56}{36} = 1,556$$

$$n_2 = \frac{1450}{1.556} = 932 \text{ min}^{-1}$$

920 min⁻¹
$$\pm$$
 2% erfüllt

ACHSABSTANDSEMPFEHLUNG

Empfehlung

$$a > 0.5$$
 $(d_{w1} + d_{w2}) + 15 \text{ mm}$

$$a < 2.0 \quad (d_{w1} + d_{w2})$$

$$a > 0.5 (91.67 + 142.60) + 15 mm = 132.14 mm$$

$$a < 2.0 (91.67 + 142.60)$$

$$= 468,54 \text{ mm}$$

a = 425 mm vorläufig gewählt

Siehe auch optibelt CAP Antriebsberechnung, Software unter www.optibelt.com

3.5 FORMELN UND BERECHNUNGSBEISPIEL

FORMELN

WIRKLÄNGE

$$L_{wth} \approx 2\alpha + \frac{\pi}{2} (d_{wg} + d_{wk}) + \frac{(d_{wg} - d_{wk})^2}{4 \alpha}$$

L_{wSt} siehe Zahnriemensortiment in Kapitel 2

BERECHNUNGSBEISPIEL

$$L_{wth} \approx 2 \cdot 425 + \frac{\pi}{2} \left(142,60 + 91,67\right) + \frac{(142,60 - 91,67)^2}{8}$$

 $L_{wth} \approx$ 1219,33 mm (gewählt aus Unterkapitel 2.1)

 $L_{wSt} = 1200 \text{ mm}$

NOMINELLER ACHSABSTAND

$$a_{nom} = K + \sqrt{K^2 - \frac{(d_{wg} - d_{wk})^2}{8}}$$

$$K = \frac{L_{wSt}}{4} - \frac{\pi}{8} \left(d_{wg} + d_{wk} \right)$$

$$a_{nom} = 208 + \sqrt{208^2 - \frac{(142,60 - 91,67)^2}{8}}$$

 $a_{nom} = 415,22 \text{ mm}$

$$K = \frac{1200}{4} - \frac{\pi}{8} (142,60 + 91,67) = 208 \text{ mm}$$

MINDESTVERSTELLWEG ZUM SPANNEN

$$x = 0.004 \cdot a_{nom}$$

 $x \ge 1,66 \text{ mm}$

MINDESTVERSTELLWEG ZUM AUFLEGEN

y = aus Tabelle 3.4.6

y = **33 mm** Bordscheibe an beiden Zahnscheiben

ANZAHL DER EINGREIFENDEN ZÄHNE AN **DER KLEINEN SCHEIBE**

$$z_e = \frac{z_k}{6} \left(3 - \frac{d_{wg} - d_{wk}}{a_{nom}} \right) \quad \text{Wert abrunden}$$

$$z_{\rm e} = \frac{36}{6} \left(3 - \frac{142,60 - 91,67}{415} \right) = 17,26$$

$$z_e = 17$$

LÄNGENFAKTOR

c₇ aus Tabelle 3.4.3

 $c_7 = 1,0$

ZAHNEINGRIFFSFAKTOR

c₁ aus Tabelle 3.4.4

 $c_1 = 1,0$

RIEMENBREITE ÜBER NENNLEISTUNG

Forderung: $P_{\ddot{U}} \ge P_{B}$

Pü = übertragbare Nennleistung einer Standard-Riemenbreite

 $P_{\ddot{U}} = P_N \cdot c_1 \cdot c_7$

 P_N (Profil, b) = $P_N \cdot Breitenfaktor$ (siehe Kapitel 4)

21,60 kW > 17,6 kW

Forderung erfüllt!

$$P_{\ddot{U}} = 21,60 \cdot 1,0 \cdot 1,0 = 21,60 \text{ kW}$$

 P_N (8MDC, b = 21 mm) = 12,34 · 1,75 = **21,60 kW**

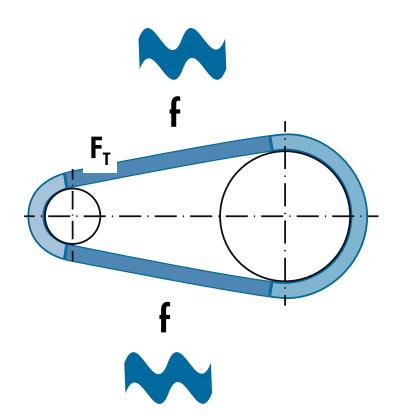
Ergebnis:

1 St. optibelt DELTA Chain Zahnriemen 1 St. optibelt ZRS DC Zahnscheibe 1 St. optibelt ZRS DC Zahnscheibe

1200 8MDC 21 36 8MDC 21

56 8MDC 21

3.6 VORSPANNKRAFTEINSTELLUNG DURCH FREQUENZMESSUNG



VORSPANNUNG FÜR optibelt DELTA Chain ZAHNRIEMEN

Für eine einwandfreie Leistungsübertragung und das Erreichen der üblichen Riemenlebensdauer ist die korrekte Riemenvorspannung von entscheidender Bedeutung. Häufig führt zu geringe oder zu hohe Vorspannung zum frühzeitigen Ausfall der Zahnriemen. Ein Überspannen hat oft auch Lagerdefekte an der Antriebs- oder Arbeitsmaschine zur Folge. Die Einstellung der vorgegebenen statischen Trumkraft z.B. mittels Daumendruckmethode ist nicht geeignet, Antriebe korrekt vorzuspannen, um sie wirtschaftlich voll ausnutzen zu können. Stattdessen empfiehlt sich die Einstellung der statischen Trumkraft mittels Frequenzmessung z.B. durch die Messmittel der **optibelt TT** Reihe. Der Vorgabewert für die Frequenzmessung kann mit den folgenden Formeln ermittelt werden.

FORMELZEICHEN

ß	[°]	Umschlingungswinkel	F_{α}	[N]	statische Achskraft
f	[Hz]	Frequenz	F_{υ}	[N]	Umfangskraft
m_k	[kg/m]	Metergewicht	t	[mm]	Teilung
L	[mm]	Trumlänge	F_T	[N]	statische Trumkraft
n_k	[1/min]	Drehzahl kleine Scheibe	٧	[m/s]	Umfangsgeschwindigkeit
P_N	[kW]	Nennleistung	Z_k		Zähnezahl kleine Scheibe

ACHSKRAFT, STATISCH	TRUMKRAFT, STATISCH	UMFANGSKRAFT	FREQUENZ
$F_{a} = 1.4 \cdot \frac{60 \cdot 10^{6} \cdot P_{N} \cdot \sin \frac{\beta}{2}}{t \cdot z_{k} \cdot n_{k}}$	$F_{T} = \frac{F_{\alpha}}{2 \cdot \sin \frac{\beta}{2}}$	$F_{U} = \frac{P_{N} \cdot 1000}{V}$	$f = \sqrt{\frac{F_T \cdot 10^6}{4 \cdot m_k \cdot L^2}}$

4 LEISTUNGSWERTE

4.1 optibelt DELTA Chain Profil 8MDC

Tabelle 4.1.1: Nennleistung für Profil 8MDC Breite 12 mm

Nennleistung P _N [kW]																	
Drehzahl						Zäl	nezał	nl der l	kleiner	Zahn	scheib	e z _k					
der kleinen	22	25	28	30	32	34	36	38	40	45	48	50	56	60	64	75	80
Zahnscheibe n _k [min ⁻¹]			71.00			kdurch								150.70	1/0.07	100.00	
	56,02	03,00	/1,30	/0,39	81,49	80,38	91,0/	90,//	101,86	114,59	122,23	12/,32	142,00	152,/9	162,97	190,99 .	203,72
10 20	0,07 0,13	0,08	0,10	0,11 0,20	0,12	0,13	0,14 0,26	0,15 0,28	0,16	0,19	0,21 0,38	0,22	0,25 0,46	0,27 0,50	0,29 0,54	0,34	0,37
40	0,25	0,15	0,18	0,38	0,22	0,24	0,48	0,51	0,30	0,34	0,70	0,74	0,84	0,92	1,00	1,22	1,31
60 100	0,37 0,59	0,43 0,70	0,50 0,81	0,55 0,88	0,60 0,96	0,65 1,03	0,70 1,11	0,74 1,19	0,79 1,27	0,91 1,46	1,01 1,60	1,07 1,69	1,20 1,94	1,32 2,12	1,44 2,30	1,76 2,81	1,89 3,01
200 300	1,08 1,52	1,31 1,87	1,55 2,20	1,70 2,44	1,86 2,66	2,02 2,88	2,17 3,10	2,32 3,33	2,48 3,55	2,86 4,11	3,09 4,43	3,25 4,66	3,69 5,31	4,00 5,74	4,30 6,18	5,11 7,36	5,49 7,89
400 500	1,95 2,36	2,39	2,84 3,45	3,14 3,83	3,43 4,18	3,72 4,53	4,01 4,90	4,30 5,26	4,60 5,61	5,32 6,49	5,74 7,02	6,03 <i>7</i> ,38	6,88 8,42	7,45 9,11	8,01 9,80	9,55 11,68	10,24 12,53
600	2,77	3,42	4,07	4,50	4,92	5,35	5,76	6,19	6,61	7,65	8,28	8,70	9,92	10,75	11,56	13,79	14,79
700 800	3,17	3,92 4,40	4,66 5,25	5,15 5,80	5,64	6,14	6,63 7,47	7,11 8,02	7,59 8,56	8,80 9,92	9,52 10,74	9,99	11,42		13,30	15,86 17,91	17,02 19,21
900 1000	3,94 4,31	4,88 5,36	5,82 6,39	6,44 7,08	7,06 7,76	7,68 8,44	8,30 9,12	8,91 9,79	9,52	11,04	13,14	12,54	15,77	15,52 17,08	18,38		21,38
1200 1400	5,05 5,77	6,29 7,20	7,52 8,61	8,33 9,55	9,13 10,48	9,94 11,42	10,75 12,34	11,54 13,25	12,34 14,18	16,45	15,49 17,81		21,39		21,68 24,93		27,74 31,89
1600 1800	6,48 7,18	8,10 8,98	9,70 10,77	10,76 11,94	11,81 13,12	12,86 14,29		14,95 16,61	15,98 17,76	20,62	22,32	21,10 23,46	24,13 26,83	26,13 29,05	31,26	33,53 37,26	35,96 39,96
2000 2400	7,86 9,20	9,85 11,55	11,81 13,87		14,41 16,94	15,69 18,46	16,98 19,97	18,24 21,47	19,51 22,96	22,67 26,68	24,54 28,88	25,78 30,35	29,49 34,69	31,93 37,56	34,36 40,41	40,93 48,09	43,88 51,52
2800	10,51		15,88	17,65											46,27		58,87
3200 3500	11,78		19,29	21,45	23,60	25,73	27,85	29,96	32,05	37,23	40,28	42,31	48,31	52,24	51,96 56,11	01,03	
4000 4500	14,24 15,72					28,91 32,00							54,14	38,31			
5000 5500	17,17 18,58					35,02 37,96					54,60	57,28					
	,,,,,,	,,,,,,,	- /	,	, -	. ,	,	,	,	,,,,,,							
						ungswe											
			SI	cn aus	aer /V	Nultiplil	kanon	тит ае	ii breif	enkorr	ekiurio	iktorer	1.				

Zulässige Nennumfangskraft F _{N zul} bei n _k ≤ 100 min ⁻¹ und z _k ≥ 40								
Breite [mm]	12	21	36	62				
F _{N zul} [N]	2200	4000	7000	12 200				

	Breitenko	rrekturfaktor		
Breite [mm]	12	21	36	62
Faktor	1,00	1,75	3,00	5,17

4 LEISTUNGSWERTE

4.2 optibelt DELTA Chain Profil 14MDC

Tabelle 4.2.1: Nennleistung für Profil 14MDC Breite 20 mm

	Nennleistung P _N [kW] Zähnezahl der kleinen Zahnscheibe z _k									b n a a b a s	b					
Drehzahl	28	30	32	34	36	2anne 38	ezani a 40	ier kieii 44	nen ∠a: 48	nnscne	be z _k	60	64	72		80
der kleinen ahnscheibe										hnschei						
n _k [min ⁻¹]	124,78	133,69	142,6	151,52	160,43	169,34	178,25	196,08	213,9	222,82	249,55	267,38	285,21	320,86	334,23	356,
	124,70	100,07	142,0	131,32	100,43	107,54	170,23	170,00	210,7	222,02	247,33	207,50	203,21	320,00	334,23	330,
10	0,89	0,95	1,02	1,10	1,17	1,24	1,31	1,44	1,58	1,64	1,85	1,99	2,12	2,38	2,49	2,6
20	1,39	1,50	1,61	1,72	1,84	1,95	2,06	2,28	2,50	2,61	2,93	3,15	3,37	3,79	3,95	4,2
40	2,31	2,51	2,69	2,88	3,07	3,26	3,45	3,82	4,19	4,37	4,92	5,29	5,64	6,36	6,64	7,0
60	3,18	3,44	3,70	3,97	4,23	4,48	4,75	5,27	5,77	6,03	6,79	7,30	7,79	8,79	9,16	9,7
100	4,80	5,21	5,61	6,02	6,41	6,82	7,21	8,00	8,79	9,17	10,34	11,10	11,87	13,39	13,95	14,
200	8,57	9,31	10,05	10,78	11,51	12,23	12,95	14,38	15,80	16,50	18,61	20,00	21,38	24,12	25,14	26,
300	12,11	13,16	14,21	15,24	16,28	17,31	18,34	20,38	22,39	23,40	26,38	28,36	30,33	34,22	35,67	38,0
400	15,48	16,83	18,18	19,52	20,86	22,18	23,50	26,13	28,73	30,01	33,85	36,40	38,91	43,90	45,76	48,
500	18,47	20,40	22,04	23,66	25,29	26,90	28,50	31,69	34,85	36,42	41,09	44,17	47,23	53,29	55,54	59,
600	21,91	23,86	25,78	27,69	29,60	31,50	33,37	37,12	40,82	42,66	48,13	51,74	55,32	62,41	65,04	69,
700	25,01	27,23	29,44	31,63	33,81	35,98	38,14	42,41	46,66	48,76	55,01	59,14	63,23	71,31	74,32	79,
800	28,04	30,54	33,02	35,49	37,94	40,37	42,80	47,61	52,37	54,73	61,74	66,37	70,96	80,02	83,38	88,
900	31,01	33,79	36,54	39,28	42,00	44,70	47,39	52,70	57,98	60,59	68,35	73,46	78,54	88,54	92,25	98,
1000	33,93	36,98	40,00	42,99	45,98	48,94	51,88	57,72	63,49	66,35	74,35	80,44	85,98	96,89	100,93	107,
1200	39,63	43,21	46,75	50,27	53,76	57,23	60,68	67,50	74,25	77,58	87,49	94,00	100,44	113,10	117,78	125,
1400	45,18	49,26	53,32	57,34	61,33	65,29	69,22	77,00	84,68	88,47	99,72	107,10	114,39	128,68	133,95	142,
1600	50,58	55,17	59,72	64,22	68,70	73,13	77,53	86,23	94,80	99,04	111,58	119,78	127,85	143,66	149,47	158,
1800	55,86	60,93	65,97	70,95	75,88	80,78	85,63	95,22	104,65	109,30	123,05	132,02	140,84	158,02		
2000	61,01	66,56	72,03	77,50	82,90	88,24	93,54	103,97	114,22	119,28	134,15	143,84	153,34			
2400	71,00	77,47	83,86	90,19	96,45	102,63	108,75	120,78	132,54	138,32	155,25					
2800	80,58	87,91	95,16	102,31	109,36	116,34	123,20	136,68	149,78	156,18						
3200	89,77	97,93	105,97	113,88	121,68	129,35	136,91	151,65								
3500	96,42	105,16	113,76	122,20	130,51	138,67	146,69									
4000	107,04	116,68	126,13	135,39	144,52	153,32										

Zulässige Nennumfangskraft F _{N zul} bei n _k ≤ 100 min ⁻¹ und z _k ≥ 40					
Breite [mm]	20	37	68	90	125
F _{N zul} [N]		13600	25 200	33 400	46500

	Breite	nkorrekturfak	tor		
Breite [mm]	20	37	68	90	125
Faktor	1,00	1,85	3,40	4,50	6,25

5 KONSTRUKTIONSHILFEN

5.1 BORDSCHEIBEN/SPANNROLLEN

BORDSCHEIBEN

Zur Führung von Optibelt-Zahnriemen sind die Zahnscheiben an einer oder beiden Seiten mit Bordscheiben zu versehen. Bei Achsabständen ≥ 8 d_{wk} sind die Zahnscheiben beidseitig mit Bordscheiben auszurüsten.

Wir empfehlen die Verwendung von Standard-Zahnscheiben. Ist dies aus Konstruktionsgründen nicht möglich, können entsprechende Zahnscheiben in Sonderausführungen eingesetzt werden.

MAXIMALE ZAHNRIEMENBREITE

Die maximale Zahnriemenbreite sollte nicht breiter sein als der Durchmesser der kleinsten im Antrieb befindlichen Zahnscheibe.

SPANNROLLEN

Rollen sind Zahn- oder Flachscheiben, die innerhalb eines Antriebssystems keine Leistung übertragen. Da sie zusätzliche Biegespannung im Riemen erzeugen, sollten sie nach folgenden Richtlinien eingesetzt werden:

- Durchmesser der Spannrollen ≥ der kleinsten zulässigen Scheibe des Profils entsprechend
- Breite der Spannrollen ≥ den im Antrieb befindlichen Zahnscheiben
- Spannrollen immer im Leertrum anordnen
- Innenspannrollen: ≤ 40 Zähne immer Zahnscheibe, > 40 Zähne Flachscheibe möglich
- als Außenrollen sind grundsätzlich Flachscheiben zu verwenden, da sie auf dem Riemenrücken laufen
- Flachscheiben keinesfalls ballig ausbilden
- · Spannrollen so anbringen, dass möglichst viele Zähne an der kleinen Scheibe im Eingriff sind
- den Umschlingungswinkel an der Spannrolle möglichst gering halten
- Mindesttrumlänge ≥ 2 · Riemenbreite

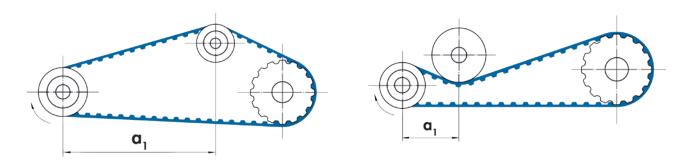


Abbildung 5.1.1: Anordnung der Innenspannrolle

Abbildung 5.1.2: Anordnung der Außenspannrolle

5 KONSTRUKTIONSHILFEN

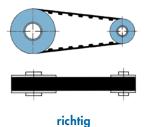
5.2 MONTAGE UND WARTUNG

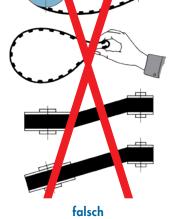
SICHERHEITSHINWEISE

Geometrisch und leistungsmäßig korrekt ausgelegte Antriebe mit Optibelt-Zahnriemen gewährleisten hohe Betriebssicherheit und optimale Lebensdauer. Die Praxis beweist, dass unbefriedigende Laufzeiten sehr häufig auf Montage- und Wartungsfehler zurückzuführen sind.

Um diesen vorzubeugen, empfehlen wir, die nachstehenden Hinweise zu beachten:

ZAHNSCHEIBEN


Die Zähne müssen normgerecht gefertigt und sauber sein.


AUSRICHTEN

Wellen und Scheiben sind vor der Montage fluchtend auszurichten.

Maximale Abweichungen der Wellenparallelität:

Riemenbreite	Winkelabweichung
≤ 25	± 1°
> 25 ≤ 50	± 0,5°
> 50 ≤ 100	± 0,25°
> 100 ≤	± 0,15°

ZAHNRIEMENSÄTZE

Zahnriemen, die paarweise oder zu mehreren Stück auf einem Antrieb laufen, müssen in jedem Fall als Satz bestellt werden. Dies garantiert, dass alle Riemen vom gleichen Fertigungswickel stammen und in ihrer Länge identisch sind.

MONTAGE

Vor der Montage ist der Achsabstand so zu verringern, dass ein zwangloses Auflegen des Zahnriemens möglich ist. Falls dies nicht möglich ist, muss der Zahnriemen zusammen mit einer oder beiden Zahnscheiben montiert werden. Eine gewaltsame Montage ist in jedem Fall unzulässig, da dies, oftmals nicht sichtbar, den hochwertigen dehnungsarmen Zugstrang sowie andere Bauteile beschädigt. Bei Verwendung von Taper-Buchsen sollten die Stiftschrauben nach 0,5 bis 1 Stunde Laufzeit per Drehmomentschlüssel erneut geprüft werden.

VORSPANNUNG

Die Vorspannung ist gemäß den in Kapitel 3.6 aufgeführten Richtlinien aufzubringen. Weitere Kontrollen nach der Montage sind nicht notwendig.

SPANNROLLEN

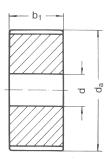
Spannrollen sind zu vermeiden. Sollte dies nicht möglich sein, so sind unsere Empfehlungen in Unterkapitel 5.1 dieses Handbuches zu beachten.

WARTUNG

Optibelt-Zahnriemen sind beim Einsatz unter normalen Umweltbedingungen wartungsfrei. Bei deutlich sichtbarem Verschleiß von Riemen und / oder Scheiben sollten diese gewechselt werden, siehe hierzu auch Hinweise in Unterkapitel 5.3 und 6.2.

5 KONSTRUKTIONSHILFEN 5.3 STÖRUNG - URSACHE - ABHILFE

Störung	Ursache	Abhilfe
Starker Verschleiß an den Zahnflanken des Riemens	Riemen unterspannt Falsches Scheibenprofil Teilungsfehler	Spannung korrigieren Profilkontrolle, evtl. Austausch Breitere Riemen mit höherer Über- tragungsleistung einsetzen
Übermäßiger Verschleiß im Zahngrund des Riemens	Zu große Riemenspannung Antrieb unterdimensioniert Fehlerhafte Zahnscheiben	Spannung reduzieren Zahnriemen bzwscheiben vergrößern Zahnscheiben austauschen
Außergewöhnlicher Verschleiß an den Riemenseiten	Fehlerhafte Achsparallelität Fehlerhafte Bordscheiben Veränderung des Achsabstandes	Wellen neu einrichten Bordscheiben austauschen Lager bzw. Gehäuse verstärken
Abscheren der Riemenzähne	Überlastung Anzahl der eingreifenden Zähne zu gering Umgebungstemperatur über 80°C	Durchmesser der kleinen Scheibe vergrößern oder breiteren Riemen wählen Breitere Riemen bzw. größere Scheiben einsetzen Bei Umgebungstemperatur über 80°C Neuauslegung mit optibelt OMEGA HP EPDM –40°C/+140°C
Übermäßiges seitliches Ablaufen	Fehlerhafte Achsparallelität Zahnscheiben fluchten nicht Stoßweise Belastung bei zu großer Riemenspannung	Wellen neu einrichten Scheiben fluchtend ausrichten Riemenspannung reduzieren
Ablösen der Bordscheiben	Zahnscheiben fluchten nicht Sehr starker Seitendruck des Zahnriemens Fehlerhafte Montage der Bordscheiben	Zahnscheiben neu einfluchten Wellen neu einrichten Bordscheiben korrekt montieren
Scheinbare Riemenlängung	Nachgiebige Lagerung	Riemenspannung korrigieren, Lagerbefestigung verstärken und sichern
Übermäßige Laufgeräusche	Fehlerhafte Wellenausrichtung Zu starke Riemenspannung Zu kleine Scheibendurchmesser Überlastung des Zahnriemens Zu große Riemenbreite bei hoher Geschwindigkeit	Wellen neu ausrichten Spannung verringern Scheibendurchmesser vergrößern Riemenbreite bzw. Zahneingriff vergrößern Verringerung der Riemenbreite durch Wahl größerer Riementypen
Abnormaler Verschleiß der Zahnscheiben	Ungeeigneter Werkstoff Fehlerhafte Verzahnung Ungenügende Oberflächenhärte	Festeren Werkstoff verwenden Zahnscheiben austauschen Härteres Material bzw. Oberflächen- härtung vornehmen
Risse im Riemenrücken	Umgebungstemperaturen unter –30°C	Neuauslegung mit optibelt OMEGA HP EPDM –40°C/+140°C Antrieb beheizen
Aufweichen des Riemenrückens	Einwirkung von unverträglichen Medien	Abschirmen bzw. geeignete Riemenqualität einsetzen


6.1 MINDESTSCHEIBENDURCHMESSER UND AUSFÜHRUNGEN

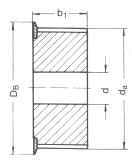
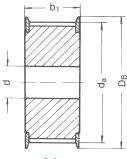
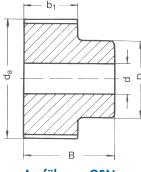
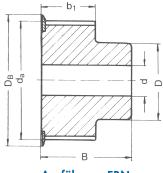
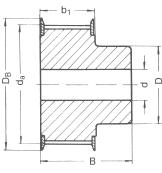

Die empfohlene Mindestzähnezahl für Zahnscheiben siehe Tabelle -6.1.1 - sollte nicht unterschritten werden. Eine Unterschreitung des Mindestscheibendurchmessers kann zu einer eingeschränkten Funktionssicherheit und unbefriedigender Laufzeit führen.

Tabelle 6.1.1: Mindestzähnezahl und -durchmesser


Profil	Mindestzähnezahl	Mindestdurchmesser [mm]
8MDC	22	56,02
14MDC	28	124,78


Ausführung OB


Ausführung EB


Ausführung ZB

Ausführung OBN

Ausführung EBN

Ausführung ZBN

WERKSTOFFE

Stahl, Grauguss, Aluminium; weitere Werkstoffe auf Anfrage Für die Geschwindigkeit > 30 m/s keine Gussscheiben mehr verwenden!

BOHRUNGEN

Alle Zahnscheiben sind vorgebohrt. Auf Wunsch auch mit Fertigbohrung nach DIN H7.

ERKLÄRUNGEN DER ABKÜRZUNGEN

ОВ ohne Bordscheibe eine Bordscheibe ΕB

zwei Bordscheiben ΖB OBN ohne Bordscheibe, mit Nabe

EBN eine Bordscheibe, mit Nabe

ZBN zwei Bordscheiben, mit Nabe

6.2 MABE UND TOLERANZEN

ZULÄSSIGE ABWEICHUNG DES ZAHNABSTANDES

Die zulässigen Abweichungen des Zahnabstandes zwischen zwei aufeinanderfolgenden Zähnen und für die Summe der Abweichungen innerhalb eines 90°-Bogens einer Scheibe sind in der folgenden Tabelle angegeben. Diese Toleranzen verstehen sich als Abstand zwischen den korrespondierenden Punkten auf jeweils der rechten oder der linken Flanke aufeinanderfolgender Zähne.

Tabelle 6.2.1: Zulässige Abweichung des Zahnabstandes

Außendurchmesser d _a [mm]	Zulässige Ab Zahnabsta	
[]	zwischen zwei aufeinander- folgenden Zähnen	Summe innerhalb eines 90°-Bogens
> 50 ≤ 100	0,03	0,10
> 100 ≤ 175	0,03	0,13
> 175 ≤ 300	0,03	0,15
> 300 ≤ 500	0,03	0,18
> 500	0,03	0,20

Tabelle 6.2.2: Zulässige Abweichung des Außendurchmessers

Außendurchmesser da [mm]	Zulässige Abweichung [mm]
> 50 ≤ 100	+ 0,10 0
> 100 ≤ 175	+ 0,13 0
> 175 ≤ 300	+ 0,15 0
> 300 ≤ 500	+ 0,18 0
> 500	+ 0,20 0

optibelt DELTA Chain Hochleistungs-Zahnriemen besitzen durch den Zugstrang aus Carbonfasern eine überdurchschnittlich hohe Längssteifigkeit. Insbesondere bei Antrieben mit kurzen Achsabständen bzw. Trumlängen und /oder großen Riemenbreiten kann eine Reduzierung der angegebenen zulässigen Abweichung des Außendurchmessers und der Lauftoleranzen erforderlich sein. Vorspannkraftschwankungen und zusätzliche Belastungen der Lager, der Wellen und des Riemens können so minimiert werden.

Tabelle 6.2.3: Scheibenbreite

Profil	Scheiben- breiten- bezeich- nung	Für Riemen breite [mm]		ohne Bord- scheiben b [mm]
8MDC	12	12	14	18
	21	21	23	27
	36	36	38	42
	62	62	65	69
14MDC	20	20	23	27
	37	37	40	46
	68	68	71	77
	90	90	95	101
	125	125	130	136

^{*}bf = Scheibenbreite zwischen den Bordscheiben

ANMERKUNG

Die Mindestbreite b für Scheiben ohne Bordscheiben kann verkleinert werden, wenn der Geradlauf des Triebes eingeregelt werden kann. Diese darf jedoch nicht unter der für Scheiben mit Bordscheiben angegebenen Mindestbreite b_f liegen.

Tabelle 6.2.4: Planlauftoleranz

Außendurchmesser d _a	Maximale Gesamt-
[mm]	schwankung [mm]
≤ 100	0,10
> 100	0,01 mm pro 10 mm
≤ 250	Außendurchmesser
> 250	0,25 mm + 0,0005 mm pro mm Außendurchmesser über 250,00 mm

Tabelle 6.2.5: Rundlauftoleranz

Außendurchmesser d _a [mm]	Maximale Gesamt- schwankung [mm]
≤ 200	0,10
> 200	0,0005 mm pro 10 mm Außendurchmesser, jedoch nicht größer als die Außen- durchmessertoleranz

6 ZAHNSCHEIBEN 6.2 MABE UND TOLERANZEN

Tabelle 6.2.6: Statische Auswuchtung

Allseitig bearbeitete Stahlscheiben müssen nicht ausgewuchtet werden, wenn die Umfangsgeschwindigkeit unter 30 m/s liegt. Graugussscheiben für mittlere Geschwindigkeiten sollten wie folgt statisch ausgewuchtet werden:

Profil	Anzahl der Zähne	Statische Auswuchtung [N]
8MDC	≤ 130 > 130	0,08 0,16
14MDC	≤ 72 > 72	0,08 0,16

Zahnscheiben, die für eine Umfangsgeschwindigkeit von über 30 m/s eingesetzt werden, müssen dynamisch bis 1,8 · 10⁻⁵ Nm ausgewuchtet werden.

PARALLELITÄT

Die Zähne sollen zur Achse der Bohrung parallel verlaufen mit einer Abweichung von höchstens 0,001 mm pro Millimeter Breite.

KONIZITÄT

Die Konizität darf höchstens 0,001 mm pro Millimeter der Kopfbreite betragen und dabei die zulässige Außendurchmessertoleranz nicht überschreiten.

6.3 SORTIMENT TAPER-BUCHSEN

optibelt TB Taper-Buchsen

	Taper-Buchsen mit metrischer Bohrung, Nut nach DIN 6885 Teil 1																
	Taper-Buchse											Material: EN-GJL-200 – DIN EN 1561					
	1008	1108	1210	1215	1310	1610	1615	2012	2517	3020	3030	3525	3535	4040	4545	5050	
Bohrungsdurchmesser d ₂ [mm]	10 11 12 14 15 16 18 19 20 22 24 \$\triangle 25 \$\triangle 25	10 11 12 14 15 16 18 19 20 22 24 25 28	11 12 14 16 18 19 20 22 24 25 28 30 32	11 12 14 16 18 19 20 22 24 25 28 30 32	14 16 18 19 20 22 24 25 28 30 32 35	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42 ▲	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42 45 48 50	14 16 18 19 20 24 25 28 30 32 35 38 40 42 45 48 50 55 60	25 28 30 32 35 38 40 42 45 48 50 55 60 65 70 75	35 38 40 42 45 48 50 55 60 65 70 75	35 38 40 42 45 48 50 55 60 65 70 75 80 85 90	35 38 40 42 45 48 50 55 60 65 70 75 80 85 90	40 42 45 48 50 55 60 65 70 75 80 85 90 95 100	55 60 65 70 75 80 85 90 95 100 105 110	70 75 80 85 90 95 100 105 110 115 120 125	
Innensechskantschrauben [in]	$^{1}/_{4} \times ^{1}/_{2}$	$^{1}/_{4} \times ^{1}/_{2}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{7}/_{16} \times ^{7}/_{8}$	¹ / ₂ x 1	⁵ / ₈ x 1 ¹ / ₄	⁵ / ₈ x 1 ¹ / ₄	1/ ₂ x 1 ¹ / ₂	1/2 x 11/2	⁵ / ₈ x 1 ³ / ₄	$^{3}/_{4} \times 2$	$^{7}/_{8} \times 2^{1}/_{4}$	
Anzugsmoment [Nm]	5,7	5,7	20	20	20	20	20	31	49	92	92	115	115	172	195	275	
Buchsenlänge [mm]	22,3	22,3	25,4	38,1	25,4	25,4	38,1	31,8	44,5	50,8	76,2	63,5	88,9	101,6	114,3	127,0	
Gewicht bei d _{2 min} [kg]	0,12	0,16	0,28	0,39	0,32	0,41	0,60	0,75	1,06	2,50	3,75	3,90	5,13	7,68	12,70	15,17	

Ab 3525: Zylinderkopfschraube mit Innensechskant ▲ Diese Bohrung ist mit Flachnut ausgeführt.

Flachnute für Taper-Buchsen

Bohrungsdurchmesser d ₂ [mm]	Nutbreite b [mm]	Nuttiefe t ₂ [mm]	Bohrungsdurchmesser d ₂ [mm]	Nutbreite b [mm]	Nuttiefe t ₂ [mm]
24	8	2,0	28	8	2,0
25	8	1,3	42	12	2,2

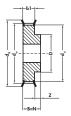
	Taper-Buchsen mit Zoll-Bohrung, Nut nach Britischem Standard BS 46 Teil 1																
	Taper-Buchse										Material: EN-GJL-200 – DIN EN 1561						
	1008	1108	1210	1215	1310	1610	1615	2012	2517	3020	3030	3525	3535	4040	4545	5050	
Bohrungsdurchmesser d ₂ [in]	3/8* 1/2 5/8 3/4 7/8 1 ▲	3/8* 1/2 5/8 3/4 7/8 1 1 11/8 **	1/2 5/8 3/4 7/8 1 1 ¹ /8 1 ¹ /4	5/8* 3/4 7/8 1 1 ¹ /8 1 ¹ /4	1/2* 5/8* 3/4* 7/8* 1* 11/8 11/4 13/8	1/2 5/8 3/4 7/8 1 11/8 11/4 13/8 11/2 15/8	1/2 5/8 3/4 7/8* 1 11/8 11/4 13/8 11/2 15/8 **	5/8* 3/4 7/8 1 11/8 11/4 13/8 11/2 15/8 13/4 17/8 2	3/4 7/8 1 1 ¹ /8 1 ¹ /4 1 ³ /8 1 ¹ /2 1 ⁵ /8 1 ³ /4 1 ⁷ /8 2 2 ¹ /8 2 ¹ /4 2 ³ /8 2 ¹ /2	11/4 13/8 11/2 15/8 13/4* 17/8 2 21/8* 21/4 23/8 21/2 25/8 23/4 27/8 3	11/4 13/8 11/2 15/8 13/4* 17/8 2 21/8* 21/4 23/8 21/2 25/8* 23/4* 27/8 3	11/2 15/8 13/4 17/8 2 21/8 21/4 23/8 21/2 25/8 23/4 27/8 31/8 31/4 33/8 31/2	11/2 15/8 13/4 17/8 2 21/8 21/4 23/8 21/2 25/8 23/4 27/8 31/8 31/4 33/8 31/2	13/4* 17/8* 2* 21/8* 21/8* 23/8* 21/2* 25/8* 23/4* 27/8* 3* 31/8* 31/8* 33/8* 31/2* 33/4 4*	2 ¹ / ₄ * 2 ³ / ₈ * 2 ¹ / ₂ * 2 ³ / ₄ * 3* 3 ¹ / ₄ * 3 ³ / ₈ * 3 ¹ / ₂ * 4* 4 ¹ / ₄ * 4 ¹ / ₂ *	3* 3 ¹ / ₄ * 3 ¹ / ₂ * 3 ³ / ₄ * 4* 4 ¹ / ₄ * 4 ¹ / ₂ * 4 ³ / ₄ *	
Innensechskantschrauben [in]	$^{1}/_{4} \times ^{1}/_{2}$	$^{1}/_{4} \times ^{1}/_{2}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{7}/_{16}$ x $^{7}/_{8}$	$^{1}/_{2} \times 1$	$^{5}/_{8} \times 1^{1}/_{4}$	5/ ₈ x 1 ¹ / ₄	1/ ₂ x 1 ¹ / ₂	1/ ₂ x 1 ¹ / ₂	⁵ / ₈ x 1 ³ / ₄	$^{3}/_{4} \times 2$	$^{7}/_{8} \times 2^{1}/_{4}$	
Anzugsmoment [Nm]	5,7	5,7	20	20	20	20	20	31	49	92	92	115	115	172	195	275	
Buchsenlänge [mm]	22,3	22,3	25,4	38,1	25,4	25,4	38,1	31,8	44,5	50,8	76,2	63,5	88,9	101,6	114,3	127,0	
Gewicht bei d _{2 min} [kg]	0,12	0,16	0,28	0,39	0,32	0,41	0,60	0,75	1,06	2,50	3,75	3,90	5,13	7,68	12,70	15,17	

Ab 3525: Zylinderkopfschraube mit Innensechskant * Keine Lagerware ▲ Diese Bohrung ist mit Flachnut ausgeführt.

6.4 SORTIMENT ZAHNSCHEIBEN

optibelt ZRS DC Zahnscheiben Profil 8MDC für optibelt TB Taper-Buchsen

6.4 SORTIMENT ZAHNSCHEIBEN


optibelt ZRS DC Zahnscheiben Profil 8MDC für optibelt TB Taper-Buchsen

Bezeichnung	Anzahl der Zähne	Aus- füh- rung	Mate- rial	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	N [mm]	D [mm]	D _i [mm]	N [mm]	Taper- Buchse	Gewicht o. Buchse ca. [kg]	
8MDC 21 TB 90	90	9	GG	229,18	227,58	-	30,0	45,0	45,0	124	198	7,5	2517	8,60	
8MDC 21 TB 112	112	9	GG	285,21	283,61	-	30,0	45,0	45,0	124	253	7,5	2517	12,50	
8MDC 21 TB 140	140	10	GG	356,51	354,91	-	30,0	51,0	51,0	150	324	10,5	3020	12,80	
					8MDC	– für Rie	menbrei	te 36							
8MDC 36 TB 28	28	3F	ST	71,30	69,70	75,0	45,0	45,0	25,0	-	-	20,0	1210	0,70	
8MDC 36 TB 30	30	3F	ST	76,39	74,79	82,5	45,0	45,0	25,0	-	-	20,0	1610	0,60	
8MDC 36 TB 32	32	3F	ST	81,49	79,89	86,0	45,0	45,0	25,0	-	-	20,0	1610	0,80	
8MDC 36 TB 34	34	3F	ST	86,58	84,98	91,0	45,0	45,0	25,0	-	-	20,0	1610	1,00	
8MDC 36 TB 36	36	3F	ST	91,67	90,07	97,0	45,0	45,0	25,0	-	-	20,0	1610	1,20	
8MDC 36 TB 38	38	3F	ST	96,77	95,17	102,0	45,0	45,0	25,0	-	-	20,0	1610	1,40	
8MDC 36 TB 40	40	3F	ST	101,86	100,26	106,0	45,0	45,0	32,0	-	-	13,0	2012	1,40	
8MDC 36 TB 45	45	3F	ST	114,59	112,99	120,0	45,0	45,0	32,0	-	-	13,0	2012	1,90	
8MDC 36 TB 48	48	3F	ST	122,23	120,63	128,0	45,0	45,0	32,0	_	_	13,0	2012	2,20	
8MDC 36 TB 50	50	3F	ST	127,32	125,72	135,0	45,0	45,0	32,0	-	-	13,0	2012	2,70	
8MDC 36 TB 56	56	3F	ST	142,60	141,00	150,0	45,0	45,0	45,0	_	_	_	2517	3,00	
8MDC 36 TB 60	60	3F	ST	152,79	151,19	158,0	45,0	45,0	45,0	-	-	-	2517	3,80	
8MDC 36 TB 64	64	3F	ST	162,97	161,37	168,0	45,0	45,0	45,0	-	-	-	2517	4,50	
8MDC 36 TB 75	75	2	GG	190,99	189,39	-	45,0	51,0	51,0	150	-	-	3020	8,70	
8MDC 36 TB 80	80	2	GG	203,72	202,12	-	45,0	51,0	51,0	150	-	-	3020	10,00	
8MDC 36 TB 90	90	9	GG	229,18	227,58	-	45,0	51,0	51,0	150	197	3,0	3020	10,40	
8MDC 36 TB 112	112	9	GG	285,21	283,61	-	45,0	51,0	51,0	150	253	3,0	3020	14,00	
8MDC 36 TB 140	140	10	GG	356,51	354,91	-	45,0	51,0	51,0	150	324	3,0	3020	12,00	
8MDC 36 TB 168	168	10	GG	427,81	426,21	-	45,0	65,0	65,0	198	396	10,0	3525	23,90	
8MDC 36 TB 192	192	10	GG	488,92	487,32	-	45,0	65,0	65,0	198	457	10,0	3525	26,60	
					8MDC	– für Rie	menbrei	te 62							
8MDC 62 TB 40	40	3F	ST	101,86	100,26	106,0	72,0	72,0	32,0	_	-	40,0	2012	2,10	
8MDC 62 TB 45	45	3F	ST	114,59	112,99	120,0	72,0	72,0	32,0	-	-	40,0	2012	3,30	
8MDC 62 TB 48	48	3F	ST	122,23	120,63	128,0	72,0	72,0	45,0	_	_	27,0	2517	3,90	
8MDC 62 TB 50	50	3F	ST	127,32	125,72	135,0	72,0	72,0	45,0	-	-	27,0	2517	4,70	
8MDC 62 TB 56	56	6F	ST	142,60	141,00	150,0	72,0	45,0	45,0	-	111	13,5	2517	5,50	
8MDC 62 TB 60	60	6F	ST	152,79	151,19	158,0	72,0	45,0	45,0	_	121	13,5	2517	6,40	
8MDC 62 TB 64	64	6F	ST	162,97	161,37	168,0	72,0	45,0	45,0	_	131	13,5	2517	7,20	
8MDC 62 TB 75	75	6	GG	190,99	189,39	-	72,0	72,0	51,0	-	159	10,5	3020	10,00	
8MDC 62 TB 80	80	6	GG	203,72	202,12	-	72,0	72,0	51,0	_	172	10,5	3020	11,50	
8MDC 62 TB 90	90	6	GG	229,18	227,58	-	72,0	72,0	51,0	-	197	10,5	3020	15,00	
8MDC 62 TB 112	112	7	GG	285,21	283,61	-	72,0	72,0	51,0	150	253	10,5	3020	15,00	
8MDC 62 TB 140	140	7	GG	356,51	354,91	-	72,0	72,0	65,0	198	324	3,5	3525	24,80	
8MDC 62 TB 168	168	8	GG	427,81	426,21	-	72,0	72,0	65,0	198	396	3,5	3525	28,40	
8MDC 62 TB 192	192	8	GG	488,92	487,32	-	72,0	72,0	65,0	198	457	3,5	3525	32,20	
Taper-Buchse		1008		1108		1210	1	610	2012		GG: Grauguss ST: Stahl Fertigungstechnische Änderungen				
Bohrung d ₂ von	bis	10-25	5	10-28		11-32	1.	4-42	14-	50	vorbeho siehe Ur	ılten. Bohru nterkapitel	ungsdurchm 6.3.	iesser d ₂	

6.4 SORTIMENT ZAHNSCHEIBEN

optibelt ZRS DC Zahnscheiben Profil 8MDC für zylindrische Bohrung

Ausf. 1F

Bezeichnung	Anzahl der Zähne	Aus- führung	Material	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	S [mm]	D [mm]	Gewicht ca. [kg]
				8MDC	– für Riem	enbreite 12	2				
8MDC 12 22	22	1F	ST	56,02	54,42	62,0	20,0	30,0	30,0	43	0,50
	8MDC – für Riemenbreite 21										
8MDC 21 22	22	1F	ST	56,02	54,42	62,0	30,0	40,0	40,0	43	0,60
8MDC – für Riemenbreite 36											
8MDC 36 25	25	1F	ST	63,66	62,06	70,0	45,0	55,0	55,0	49	1,10
				8MDC	– für Riem	enbreite 62	2				
8MDC 62 30	30	1F	ST	76,39	74,79	86,0	72,0	84,0	84,0	65	2,50
8MDC 62 32	32	1F	ST	81,49	79,89	90,0	72,0	84,0	84,0	69	2,80
8MDC 62 34	34	1F	ST	86,58	84,98	95,0	72,0	84,0	84,0	74	3,00
8MDC 62 36	36	1F	ST	91,67	90,07	98,0	72,0	84,0	84,0	77	3,40
8MDC 62 38	38	1F	ST	96,77	95,17	106,0	72,0	84,0	84,0	84	3,80

ST: Stahl Fertigungstechnische Änderungen vorbehalten.

6 ZAHNSCHEIBEN 6.4 SORTIMENT ZAHNSCHEIBEN

optibelt ZRS DC Zahnscheiben Profil 14MDC für optibelt TB Taper-Buchsen

6 ZAHNSCHEIBEN 6.4 SORTIMENT ZAHNSCHEIBEN

optibelt ZRS DC Zahnscheiben Profil 14MDC für optibelt TB Taper-Buchsen

6 ZAHNSCHEIBEN 6.4 SORTIMENT ZAHNSCHEIBEN

optibelt ZRS DC Zahnscheiben Profil 14MDC für zylindrische Bohrung

7 ALLGEMEINE INFORMATIONEN

7.1 NORMENÜBERSICHT

Bundesrepublik Deutschland	ISO 3410	– Endlose Variatorriemen und Scheiben für den Landmaschinenbau
DIN 109 Blatt 1 – Antriebselemente; Umfangsgeschwindigkeiten DIN 109 Blatt 2 – Antriebselemente; Achsabstände für Riementriebe	ISO 4183	Rillenscheiben für klassische Keilriemen und Schmalkeil- riemen
mit Keilriemen	ISO 4184	 Klassische Keilriemen und Schmalkeilriemen; Längen
DIN 111 – Flachriemenscheiben; Maße, Nenndrehmomente DIN 111 Blatt 2 – Flachriemenscheiben; Zuordnung für elektrische Maschinen	ISO 5256	 Synchronriemenantriebe; Riemen-Zahnteilungskurzzeichen Teil 1 MXL; XL; L; H; XH; XXH Teil 2 MXL; XXL metrische Maße
DIN 2211 Blatt 1 — Schmalkeilriemenscheiben; Maße, Werkstoff DIN 2211 Blatt 2 — Schmalkeilriemenscheiben; Prüfung der Rillen	ISO 5287	 Schmalkeilriemenantriebe für die Kraftfahrzeugindustrie; Ermüdungsprüfung
DIN 2211 Blatt 3 – Schmalkeilriemenscheiben; Zuordnung für elektrische	ISO 5288	Vokabular von Zahnriemenantrieben
Maschinen	ISO 5289	Endlose Doppelkeilriemen und Scheiben für den
DIN 2215 – Endlose Keilriemen, klassische Profile; Mindestrichtdurch-	130 3207	Landmaschinenbau
	100 5000	
messer der Scheiben, Innen- und Richtlängen der Riemen	ISO 5290	- Verbund-Schmalkeilriemenscheiben;
DIN 2216 – Endliche Keilriemen; Maße		Rillenprofile 9J; 15J; 20J; 25J
DIN 2217 Blatt 1 – Keilriemenscheiben für klassische Profile; Maße, Werkstoff	ISO 5291	 Verbund – klassische Keilriemenscheiben;
DIN 2217 Blatt 2 – Keilriemenscheiben für klassische Profile; Prüfung der		Rillenprofile AJ; BJ; CJ; DJ
Rillen	ISO 5292	 Industriekeilriemen-Antriebe; Berechnungen der
DIN 2218 – Endlose Keilriemen, klassische Profile für den Maschinen-		Leistungswerte und des Achsabstandes
bau; Berechnung der Antriebe, Leistungswerte	ISO 5295	– Zahnriemen; Berechnungen der Leistungswerte und des
DIN 7716 – Erzeugnisse aus Kautschuk und Gummi; Anforderungen		Achsabstandes – "Inch-Teilung"
an die Lagerung, Reinigung und Wartung	ISO 8370-1	 Dyn. Prüfung zur Bestimmung der Wirkzone bei Keilriemen
DIN 7719 Teil 1 – Endlose Breitkeilriemen für industrielle Drehzahlwandler;	ISO 8370-2	 Dyn. Prüfung zur Bestimmung der Wirkzone bei
Riemen und Rillenprofile der zugehörigen Scheiben		Rippenbändern
DIN 7719 Teil 2 – Endlose Breitkeilriemen für industrielle Drehzahlwandler; Messung der Achsabstandsschwankung	ISO/DIS 8419	 Riemengetriebe, Verbund-Schmalkeilriemen; Längen im Bezugssystem; 9N/J, 15N/J, 25N/J
DIN 7721 Teil 1 – Synchronriemenantriebe, metrische Teilung; Synchronriemen	ISO 9010	 Synchronriemenantriebe – Riemen für den Kraftfahrzeugbau
DIN 7721 Teil 2 – Synchronriemenantriebe, metrische Teilung; Zahnlückenprofil für Synchronscheiben	ISO 9011	 Synchronriemenantriebe – Scheiben für den Kraftfahrzeugbau
DIN 7722 – Endlose Hexagonalriemen für Landmaschinen und Rillenprofile der zugehörigen Scheiben	ISO 9563	Antistatische endlose Synchronriemen; elektrische Leitfähigkeit; Merkmale und Prüfverfahren
	ISO 9980	
DIN 7753 Teil 1 – Endlose Schmalkeilriemen für den Maschinenbau; Maße	130 9900	– Riemengetriebe; Keilriemenscheiben; Überprüfung der
DIN 7753 Teil 2 – Endlose Schmalkeilriemen für den Maschinenbau;	100 0001	Geometrie der Keilrillen
Berechnung der Antriebe, Leistungswerte	ISO 9981	- Riemengetriebe - Scheiben und Rippenbänder für den
DIN 7753 Teil 3 – Endlose Schmalkeilriemen für den Kraftfahrzeugbau;		Kraftfahrzeugbau; Profil PK
Maße	ISO 9982	 Riemengetriebe; Scheiben und Rippenbänder für indus-
DIN 7753 Teil 4 – Endlose Schmalkeilriemen für den Kraftfahrzeugbau;		triellen Bedarf; geometrische Daten PH, PJ, PK, PL und PM
Ermüdungsprüfung	ISO 11749	 Riemengetriebe – Keilrippenriemen für die Kfz-Industrie,
DIN 7867 – Keilrippenriemen und -scheiben		Ermüdungsprüfung
DIN/ISO 5290 – Verbund-Schmalkeilriemenscheiben; Profile 9J; 15J; 20J; 25J	ISO 12046	 Synchronriemengetriebe Kfz-Riemen; physikalische Eigenschaften
DIN 22100-7 — Betriebsmittel aus Kunststoffen zur Verwendung in	ISO 13050	 Synchronriemengetriebe – Metrische Teilung, kurvenför-
Bergwerken unter Tage, Abschnitt 5.4 Keilriemen	10000	mige Profilsysteme G, H, R und S, Riemen und Scheiben
DIN EN 60695-11-10	ISO 17396	 Synchronriemengetriebe – Metrische Teilung, trapezför-
	130 1/390	
 Prüfung zur Beurteilung der Brandgefahr 	100 100 47	mige Profilsysteme T und AT, Riemen und Scheiben
	ISO 19347	 Zahnriemenantriebe – trapezförmiges Profilsystem – zöllige Abmessungen – Riemen und Scheiben

ISO – International Organization for Standardization

ISO 22	– Breiten von Flachriemen und zugehörigen Riemenscheiben	USA
ISO 63	– Flachriemenantriebe; Längen	
ISO 99	– Durchmesser der Riemenscheiben für Flachriemen	RMA/ARPM IP-20 – Classical V-Belts and Sheaves
ISO 100	– Wölbhöhen der Riemenscheiben für Flachriemen	(A; B; C; D; Cross Sections)
ISO 155	 Antriebsscheiben; begrenzte Werte zur Einstellung der Achsabstände 	RMA/ARPM IP-21 — Double (Hexagonal) Belts (AA; BB; CC; DD Cross Sections)
ISO 254	 Qualität, Bearbeitung und Auswuchtung der Riemen- scheiben 	RMA/ARPM IP-22 – Narrow Multiple V-Belts (3V; 5V; and 8V Cross Sections) RMA/ARPM IP-23 – Single V-Belts (2L; 3L; 4L; and 5L Cross Sections)
ISO 255	 Scheiben f ür klassische Keilriemen und Schmalkeil- riemen; geometrische Pr üfung der Rillen 	RMA/ARPM IP-24 — Synchronous Belts (MXL; XL; L; H; XH; and XXH Belt Sections)
ISO 1081	 Vokabular von Keilriemen und Keilrippenriemen und Scheiben 	RMA/ARPM IP-25 – Variable Speed V-Belts (12 Cross Sections) RMA/ARPM IP-26 – V-Ribbed Belts (PH; PJ; PK; PL; and PM Cross Sections)
ISO 1604	 Endlose Variatorriemen und Scheiben für den Maschinenbau 	RMA/ARPM IP-27 — Curvilinear Toothed Synchronous Belts (8M – 14M Pitches)
ISO 1813	 Elektrische Leitfähigkeit von Keilriemen, Kraftbändern, Keilrippenriemen, Breitkeilriemen, Doppelkeilriemen 	ASAE S 211 – V-Belt Drives for Agricultural Machines SAE J636b – V-Belts and Pulleys
ISO 2230 ISO 2790	 siehe DIN 7716 Schmalkeilriemenantriebe für die Kraftfahrzeugindustrie; Maße 	SAE J637 — Automotive V-Belt Drives

7 ALLGEMEINE INFORMATIONEN

7.2 DATENBLATT ZUR BERECHNUNG / ÜBERPRÜFUNG VON ZAHNRIEMENANTRIEBEN

•				•	Firma:				
					Straße/Postfach:				
					PLZ/Ort:				
					Sachbearbeiter:				
					Abteilung:		Datum:		
					Telefon:		Fax:		
					releion.				
					-		E-Mail:		
					ausgelegt mit				
für Versuch		neuer Ar			Wirklänge	Profil	Breite	Fabrikat	
für Nullserie			nder Antrieb						
für Serie		Bedart _	Stück	c/Jahr					
ANTRIEBSMA	ASCHINE				ARBEITSMASCH	HINE			
Art (z.B. Elektromoto	or, Dieselmotor 3 Zyl.)				Art (z.B. Drehmaschine	, Kompressor)			
	aufmoments (z.B. MA				Anlauf:	unter Last		im Leerlauf	
	ern-Dreieck)								
	osdauer		Stu		Art der Belastung:	konstant		pulsierend	
	altungen			h 📙		stoßartig			
_	nderung								
-	mal				Leistungsbedarf: F				
	kimal					maximal			kW
	nmoment				oder max. Drehm				1
	Wellen: horizonto		vertiko			12			1
Allorationing der	schräg		Verniko			¹ 2 min ————— ¹ 2 max ————			
Maximal zuläss	sige Achskraft S _{a m}				Maximal zulässige				
	er oder Anzahl de				Wirkdurchmesser				
d _{w1}	mm	1 Z ₁		mm		mm			mm
d _{w1 min}	mm	ı Z _{l min}		mm		mm			mm
	mm					mm			
Scheibenbreite	maximal			mm	Scheibenbreite mo				
	Übersetzung	i		_	i _{min}	i _{max}			
	Achsabstand	а		<u>mm</u>	a _{min} r	nm <u>a_{max} </u>		mm	
	Spann-/Führu	ingsrolle:Inne	nrolle		im gezogenen Tru	m 📙			
		Außenroll	е		im ziehenden Trur	m 📙			
	d _w	mr	m Zahnscheibe		beweglich	(z.B. Fed	er)		
	-		m Flachscheibe		fest				
	Betriebsbedin	ngungen	Umgebungstemp	eratur					
							°C maxir	nal	
		Eiı	nfluss von Öl		(z.B. Ölnebel, Tropfen)				
			Wasse	er 🔲	(z.B. Spritzwasser) _				
			Säure		(Art, Konzentration, Te	mperatur)		_	
			Staub		(Art)				

Sonderantriebe: Zum Beispiel bei Antrieben mit Spann-/Führungsrollen, Drei- oder Mehrscheibenantrieben sowie Antrieben mit gegenläufiger Drehrichtung sind Zeichnungsunterlagen erforderlich. Benutzen Sie für Skizzen die Rückseite.

NOTIZEN	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

NOTIZEN	

Inhaber sämtlicher Urheber- und Leistungsschutzrechte sowie sonstiger Nutzungs- und Verwertungsrechte: Arntz Optibelt Unternehmensgruppe, Höxter/Deutschland. Jegliche Nutzung, Verwertung, Verwertung oder jegliche Weitergabe an Dritte bedarf der vorherigen schriftlichen Genehmigung durch die Arntz Optibelt Unternehmensgruppe, Höxter/Deutschland. Zuwiderhandlungen werden urheberrechtlich verfolgt.

Die Inhalte stellen unverbindliche Angebote dar, die sich ausschließlich an Unternehmen und nicht an Verbraucher richten. Optibelt empfiehlt den Einsatz seiner Produkte ausschließlich gemäß den Hinweisen in den Optibelt-Dokumentationen. Der Einsatz von Optibelt-Produkten in Flugzeugen oder flugzeugähnlichen Systemen, Produkten und / oder Applikationen ist nicht zulässig. Im Zweifelsfall ist der Einsatz von Optibelt-Produkten vor der Verwendung mit Optibelt abzustimmen. Optibelt lehnt jegliche Haftung ab, wenn Optibelt-Produkte in Systeme, Produkte und/oder Applikationen eingesetzt werden, für welche sie nicht entwickelt und/oder hergestellt wurden. Dies ist insbesondere – aber nicht abschließend – dann der Fall, wenn von einer bestimmten Verwendungseignung oder Beschaffenheitserwartung der Optibelt-Produkte außerhalb eines konkreten Vertragsabschlusses mit Optibelt ausgegangen wird oder die Optibelt-Produkte unter unüblichen oder ein besonderes Gesundheits-, Sicherheits- oder Umwelt-Risiko darstellenden oder eine erhöhte Beanspruchung erfordernden Bedingungen eingesetzt werden.

Irrtümer und Änderungen vorbehalten. Optibelt übernimmt keine Gewährleistung, dass die von Optibelt zur Verfügung gestellten Informationen vollständig oder richtig sind und von dem Empfänger der Informationen verwendet werden können. Optibelt haftet – soweit rechtlich zulässig – daher nicht für Schäden, die durch den Gebrauch oder durch das Vertrauen auf die Vollständigkeit und Richtigkeit der Informationen außerhalb eines konkreten Vertragsabschlusses mit Optibelt entstehen.

Es gelten ausschließlich die Allgemeinen Verkaufsbedingungen der Optibelt GmbH, Höxter/Deutschland, insbesondere der darin geregelte Eigentumsvorbehalt, auch in seiner verlängerten und erweiterten Form. Diese können kostenlos angefordert werden und sind unter https://www.optibelt.com/agb/ abrufbar. Entgegenstehende oder abweichende Geschäftsbedingungen des Kunden verpflichten Optibelt nicht, auch wenn Optibelt nicht ausdrücklich widerspricht oder ungeachtet entgegenstehender oder abweichender Geschäftsbedingungen des Kunden vorbehaltlos Leistungen erbringt oder Leistungen des Kunden annimmt.

Druck: 0521

Optibelt GmbH

Corveyer Allee 15 37671 Höxter GERMANY **T** +49 5271 621 **F** +49 5271 976200 **E** info@optibelt.com

www.optibelt.com